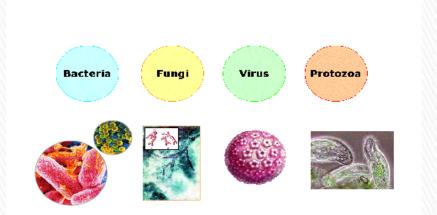
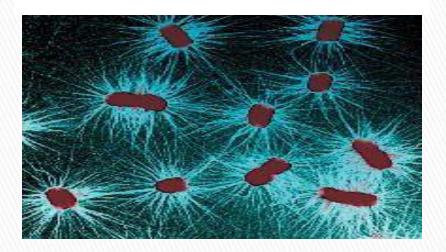
Name of Faculty: Swati Shashikant powar


Topic Name: AN INTRODUCTION TO MICROBIOLOGY


Microbiology for the Health Sciences An Introduction to Microbiology

The Scope of Microbiology

- Microbiology: The study of living things too small to be seen without magnification
 - Microorganisms or microbes these microscopic organisms
 - Commonly called "germs, viruses, agents..." but not all cause disease and many more are useful or essential for human life

How Can Microbes Be Classified?

Carolus Linnaeus (Swedish)
developed taxonomic system for
naming plants and animals and
grouping similar organisms
together

Leeuwenhoek's microorganisms grouped into six categories as follows:

Fungi

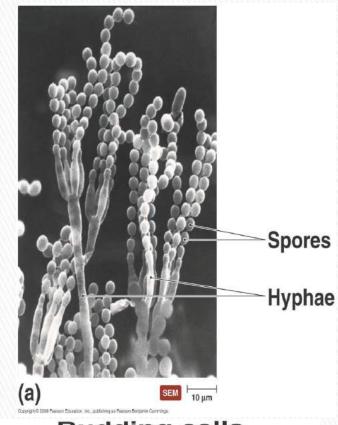
Protozoa

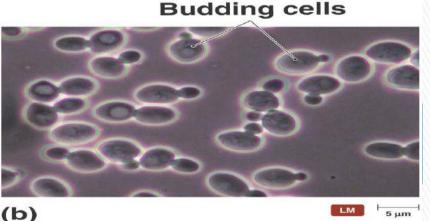
Algae

Bacteria

Archaea

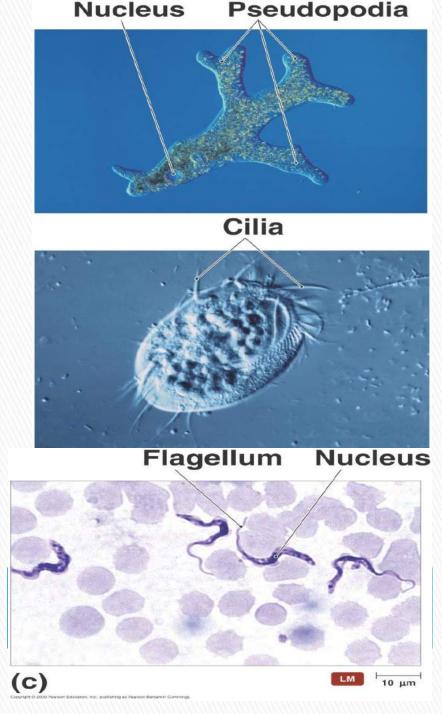
Small animals

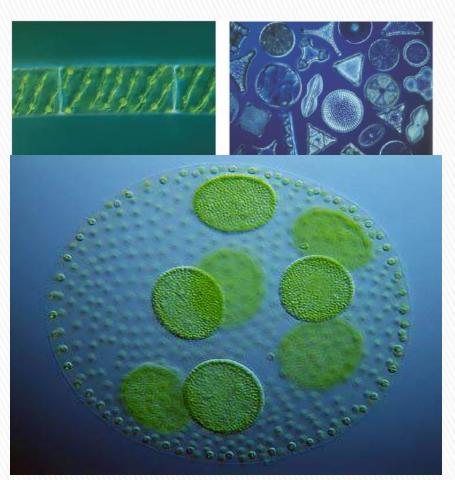

LM


50 μn

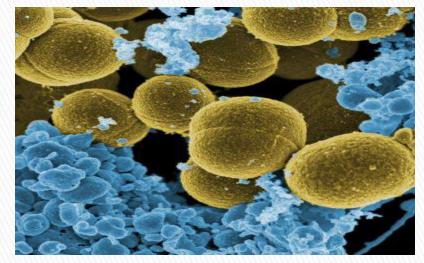
Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

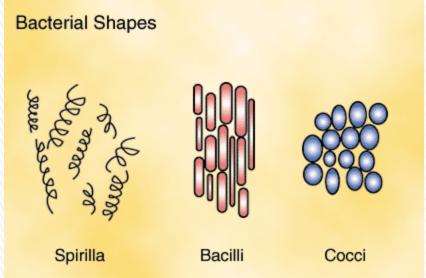
Fungi


- Eukaryotic (have membranebound nucleus)
- Obtain food from other organisms
- Possess cell walls
- Composed of
 - Molds multicellular; have hyphae; reproduce by sexual and asexual spores
 - Yeasts unicellular; reproduce asexually by budding; some produce sexual spores

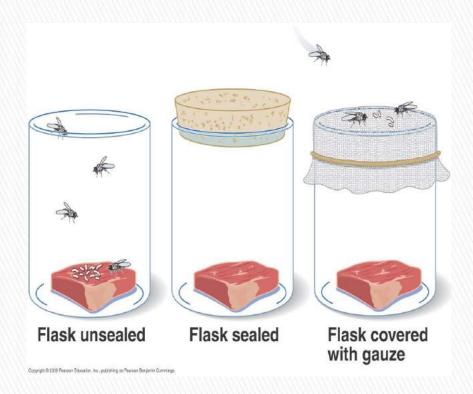

Protozoa

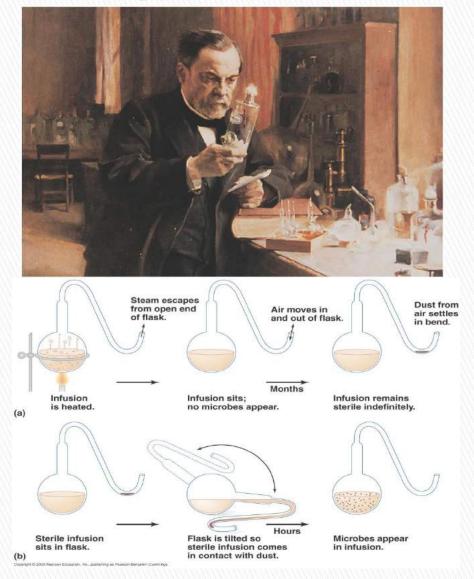
- Single-celled eukaryotes
- Similar to animals in nutrient needs and cellular structure
- Live freely in water; some live in animal hosts
- Asexual (most) and sexual reproduction
- Most are capable of locomotion by
 - Pseudopodia cell extensions that flow in direction of travel
 - Cilia numerous, short, hairlike protrusions that propel organisms through environment
 - Flagella extensions of a cell that are fewer, longer, and more whiplike than cilia


Algae


- Unicellular or multicellular
- Photosynthetic
- Simple reproductive structures
- Categorized on the basis of pigmentation, storage products, and composition of cell wall

Bacteria and Archaea

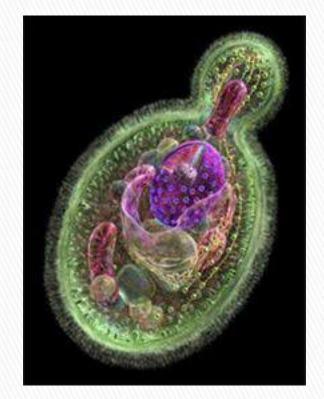

- Unicellular and lack nuclei
- Much smaller than eukaryotes
- Found everywhere there is sufficient moisture; some found in extreme environments
- Reproduce asexually
- Two kinds
 - Bacteria cell walls contain peptidoglycan; some lack cell walls; most do not cause disease and some are beneficial
 - Archaea cell walls composed of polymers other than peptidoglycan


Redi's Experiments

- When decaying meat was kept isolated from flies, maggots never developed
- Meat exposed to flies was soon infested
- As a result, scientists began to doubt Aristotle's theory

Pasteur's Experiments

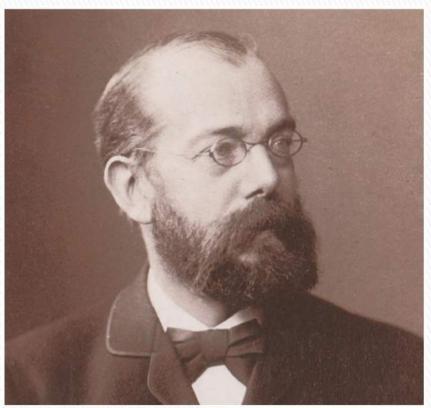
- When the "swan-necked flasks" remained upright, no microbial growth appeared
- When the flask was tilted, dust from the bend in the neck seeped back into the flask and made the infusion cloudy with microbes within a day



ab	le 1.1	Some Indu	strial Uses of Microbes
	Product	or Process	Contribution of Microorganism
	Foods a	and Beverages	
	Cheese		Flavoring and ripening produced by bacteria and fungi; flavors dependent on the source of milk and the type of microorganism
	Alcoholic	beverages	Alcohol produced by bacteria or yeast by fermentation of sugars in fruit juice or grain
	Soy sauc	е	Produced by fungal fermentation of soybeans
	Vinegar		Produced by bacterial fermentation of sugar
	Yogurt		Produced by bacteria growing in skim milk
	Sour crea	am	Produced by bacteria growing in cream
	Artificial	sweetener	Amino acids synthesized by bacteria from sugar
	Bread		Rising of dough produced by action of yeast; sourdough results from bacteria-produced acids

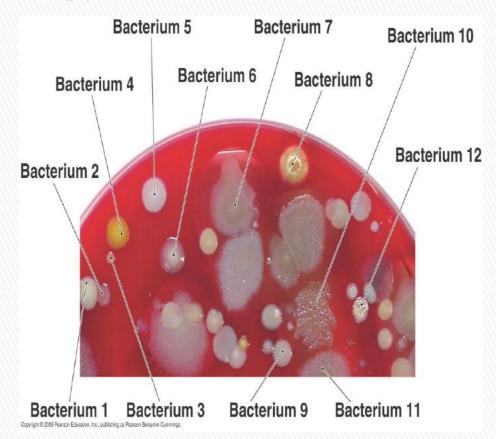
Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Table 1.1 Some Industrial Uses of Microbes		l Uses of Microbes		
	Product or Process		Contribution of Microorganism	
	Other F	Products		
	Antibioti	CS	Produced by bacteria and fungi	
	Human g	growth hormone, nsulin	Produced by genetically engineered bacteria	
	Laundry	enzymes	Isolated from bacteria	
	Vitamins		Isolated from bacteria	
		ceous earth (used in and buffing compounds)	Composed of cell walls of microscopic algae	
	Pest conf	trol chemicals	Insect pests killed or inhibited by bacterial pathogens	
	Drain op	ener	Protein-digesting and fat-digesting enzymes produced by bacteria	

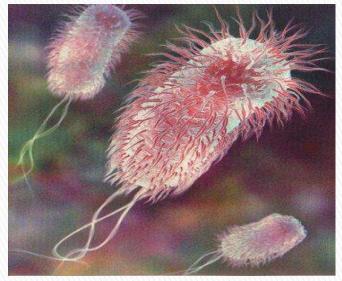


Copyright @ 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

What Causes Disease?


- Pasteur developed germ theory of disease
- Robert Koch studied causative agents of disease
 - Anthrax
 - Examined colonies of microorganisms

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.


Koch's Experiments

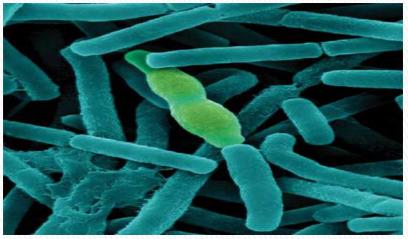
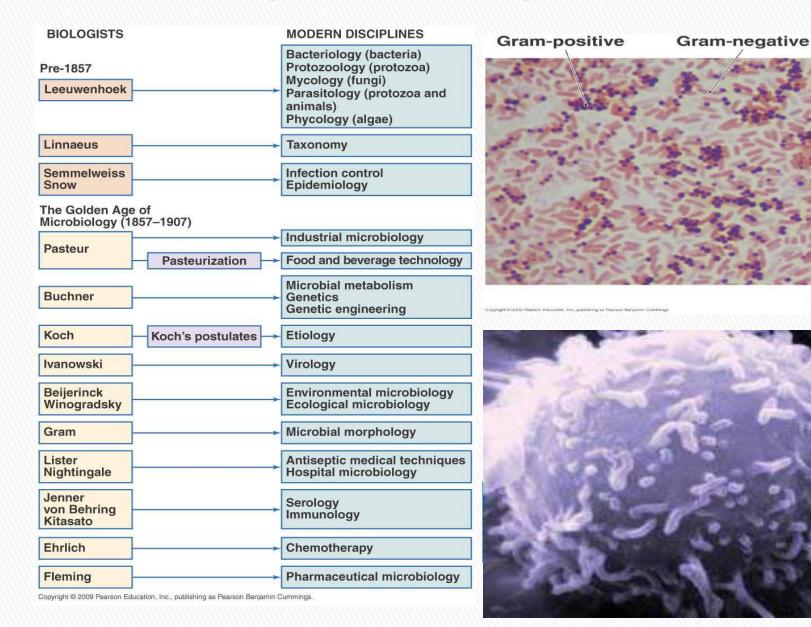
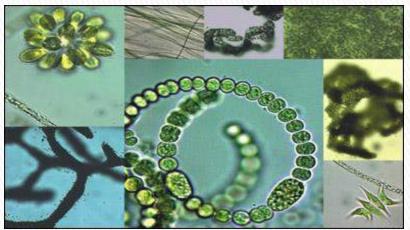

- Simple staining techniques
- First photomicrograph of bacteria
- First photomicrograph of bacteria in diseased tissue
- Techniques for estimating CFU/ml
- Use of steam to sterilize media
- Use of Petri dishes
- Aseptic techniques
- Bacteria as distinct species
- Koch's Postulates

Table 1.2 Some Notable Scientists of the "Golden Age of Microbiology" and the Agents of Disease They Discovered

Scientist	Year	Disease	Agent
Robert Koch	1876	Anthrax	Bacillus anthracis (bacterium)
Albert Neisser	1879	Gonorrhea	Neisseria gonorrhoeae (bacterium)
Charles Laveran	1880	Malaria	Plasmodium species (protozoa)
Carl Eberth	1880	Typhoid fever	Salmonella typhi (bacterium)
Robert Koch	1882	Tuberculosis	Mycobacterium tuberculosis (bacterium)
Edwin Klebs	1883	Diphtheria	Corynebacterium diphtheriae (bacterium)
Theodore Escherich	1884	Traveler's diarrhea Bladder infection	Escherichia coli (bacterium)
Albert Fraenkel	1884	Pneumonia	Streptococcus pneumoniae (bacterium)
Robert Koch	1884	Cholera	Vibrio cholerae (bacterium)
David Bruce	1887	Undulant fever (brucellosis)	Brucella melitensis (bacterium)
Anton Weichselbaum	1887	Meningococcal meningitis	Neisseria meningitidis (bacterium)
A. A. Gartner	1888	Salmonellosis (form of food poisoning)	Salmonella species (bacterium)
Shibasaburo Kitasato	1889	Tetanus	Clostridium tetani (bactenum)
Omitri Ivanowski and Martinus Beijerinck	1892 1898	Tobacco mosaic disease	Tobamovirus tobacco mosaic virus
William Welch and George Nuttall	1892	Gas gangrene	Clostridium perfringens (bacterium)
Alexandre Yersin and Shibasaburo Gitasato	1894	Bubonic plague	Yersinia pestis (bacterium)
Kiyoshi Shiga	1898	Shigellosis (a type of severe diarrhea)	Shigella dysenteriae (bacterium)
Nalter Reed	1900	Yellow fever	Flavivirus Yellow fever virus
Robert Forde and Joseph Dutton	1902	African sleeping sickness	Trypanosoma brucei gambiense (protozoan

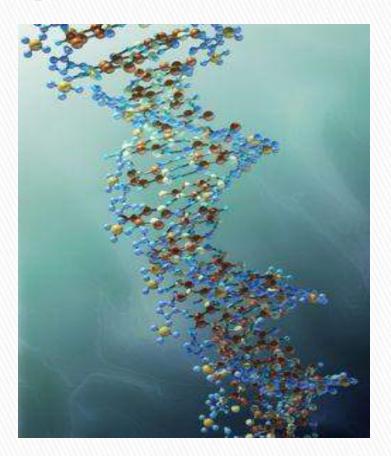


- How Can We Prevent Infection and Disease?
 - Semmelweis and handwashing
 - Lister's antiseptic technique
 - Nightingale and nursing
 - Snow infection control and epidemiology
 - Jenner's vaccine field of immunology
 - Ehrlich's "magic bullets" field of chemotherapy



ole 1.3 Fields of Mi	crobiology
Disciplines	Subject(s) of Study
Basic Research	
Microbe-Centered	
Bacteriology	Bacteria and archaea
Phycology	Algae
Mycology	Fungi
Protozoology	Protozoa
Parasitology	Parasitic protozoa and parasitic animals
Virology	Viruses
Process-Centered	
Microbial metabolism	Biochemistry: chemical reactions within cells
Microbial genetics	Functions of DNA and RNA
Environmental microbiology	Relationships between microbes, and among microbes, other organisms, and their environment

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

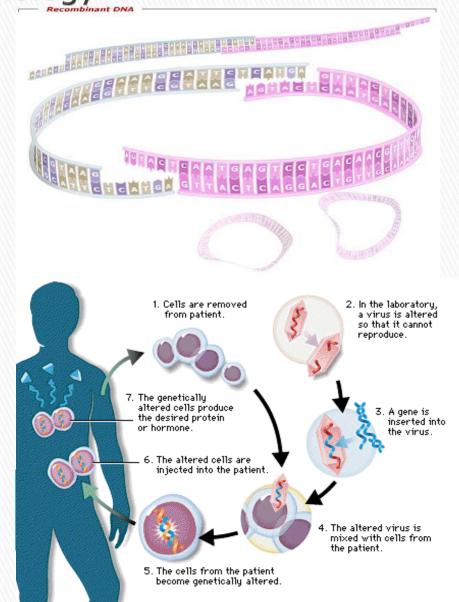

- What Are the Basic Chemical Reactions of Life?
 - Biochemistry
 - Began with Pasteur's work on fermentation and Buchner's discovery of enzymes in yeast extract
 - Kluyver and van Niel microbes used as model systems for biochemical reactions
 - Practical applications
 - Design of herbicides and pesticides
 - Diagnosis of illnesses and monitoring of patients' responses to treatment
 - Treatment of metabolic diseases
 - Drug design

le 1.3 Fields of M	licrobiology			
Disciplines	Subject(s) of Study			
Applied Microbiology				
Medical Microbiology				
Serology	Antibodies in blood serum, particularly as an indicator of infection			
Immunology	Body's defenses against specific diseases			
Epidemiology	Frequency, distribution, and spread of disease			
Etiology	Causes of disease			
Infection control	Hygiene in health care settings and control of nosocomial infections			
Chemotherapy	Development and use of drugs to treat infectious diseases			
Applied Environmental Microbiology				
Bioremediation	Use of microbes to remove pollutants			
Public health microbiology	Sewage treatment, water purification, and control of insects that spread disease			
Agricultural microbiology	Use of microbes to control insect pests			
Industrial Microbiology (I	Biotechnology)			
Food and beverage technology	Reduction or elimination of harmful microbes in food and drink			
Pharmaceutical microbiolog	y Manufacture of vaccines and antibiotics			
Recombinant DNA technology	Alteration of microbial genes to synthesize useful products			

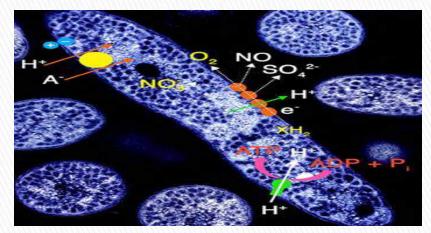
Copyright @ 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

How Do Genes Work?

- Microbial genetics
- Molecular biology
- Recombinant DNA technology
- Gene therapy

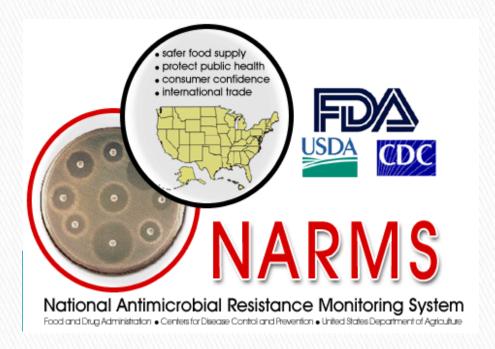


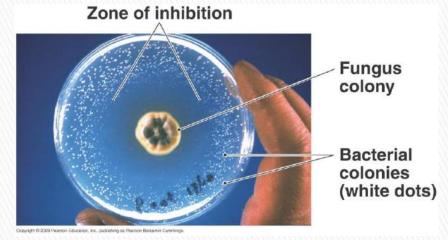
Recombinant DNA Technology

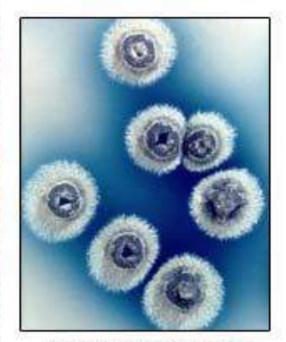

- Genes in microbes, plants, and animals manipulated for practical applications
- Production of human bloodclotting factor by E. coli to aid hemophiliacs

Gene Therapy

 Inserting a missing gene or repairing a defective one in humans by inserting desired gene into host cells

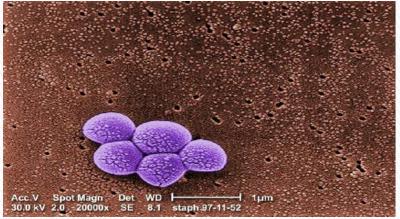

- What Role Do Microorganisms Play in the Environment?
 - Bioremediation uses living bacteria, fungi, and algae to detoxify polluted environments
 - Recycling of chemicals such as carbon, nitrogen, and sulfur




- How Do We Defend Against Disease?
 - Serology
 - The study of blood serum
 - Von Behring and Kitasato existence in the blood of chemicals and cells that fight infection
 - Immunology
 - The study of the body's defense against specific pathogens
 - Chemotherapy
 - Fleming discovered penicillin
 - Domagk discovered sulfa drugs

- What Will the Future Hold?
 - Microbiology is built on asking and answering questions
 - The more questions we answer, the more questions we have

Streptomyces colonies producing a blue antibiotic. (John Innes Centre)

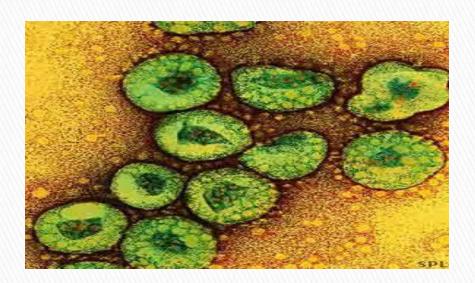

(a)

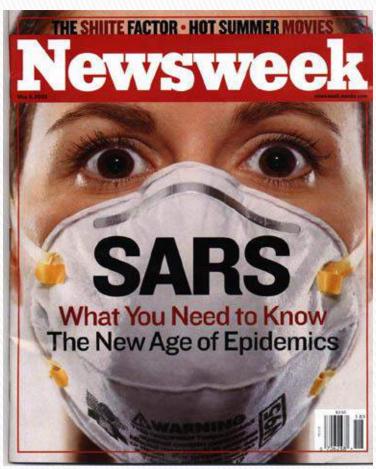
Worldwide Infectious Diseases Affecting Health

Sciences

 Increasing number of drug resistant strains including Nosocomial and Community Acquired microorganisms

- MRSA Methicillin Resistant Staphylococcus aureus
- VRE Vancomycin Resistant Enterococcus
- VRSA Vancomycin Resistant Staphylococcus aureus
- MDR-TB Multidrug Resistant Tuberculosis

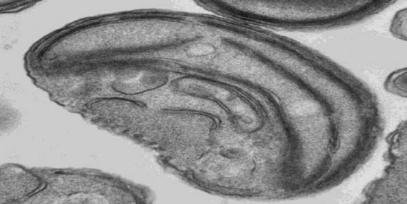



Worldwide Infectious Diseases Affecting Health

Sciences

 Increasing number of emerging diseases (SARS, AIDS, hepatitis C, viral encephalitis)

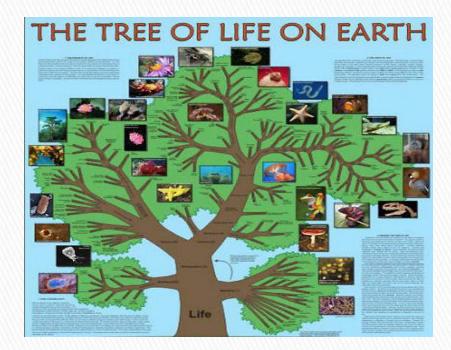
 Other diseases previously not linked to microorganisms now are (gastric ulcers, certain cancers, multiple sclerosis)

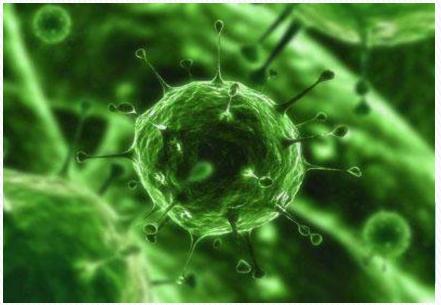


Cellular Organization

Prokaryotic

Eukaryotic




Definition of Life

What characteristics must an organism have in order

to considered alive?

- Metabolism: Transformation of energy by converting chemicals and energy into cellular components (anabolism) and decomposing organic matter (catabolism). Living things require energy to maintain internal organization (homeostasis) and to produce the other phenomena associated with life.
- **Reproduction**: The ability to produce new individual organisms either asexually, from a single parent organism, or sexually, from at least two parent organisms.

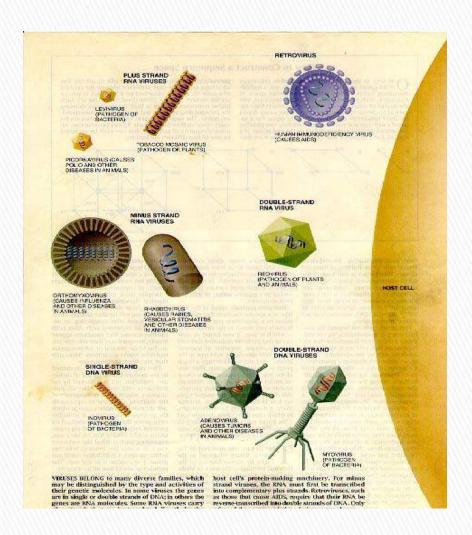
Types of Microorganisms Based on Acquiring

Nutrition

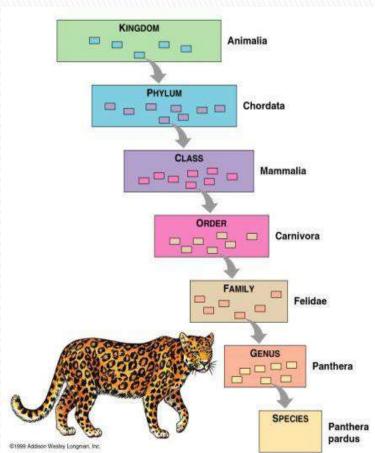
Autotrophic

Heterotrophic

Saprophytic or Saprobic



Viruses


- Not independently living cellular organisms
- Much simpler than cells- basically a small amount of DNA or RNA wrapped in protein and sometimes by a lipid membrane
- Individuals are called a virus particle or virion
- Depend on the infected cell's machinery to multiply and disperse

Taxonomy: Naming, Classifying, and Identifying Microorganisms

Microbial nomenclature – naming microorganisms

- Taxonomy- classifying living things
- Identification discovering and recording the traits of organisms so they can be named and classified

Traditional Whittaker Classification

Five Kingdoms

Prokaryotae (Monera)

Protista

Fungae

Plantae

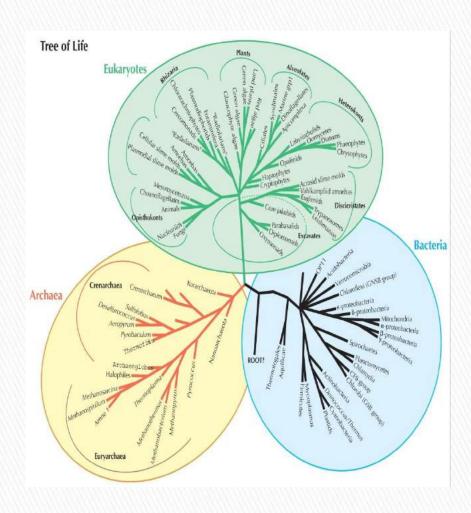
Animalia

Based on:

Morphology
Metabolism (Biochemical Activity)
Molecular Techniques
Fatty Acid Profiles
Protein Differentiation

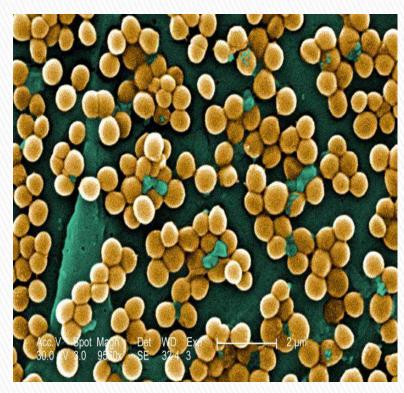
DNA Finger Printing

ANIMALIA FUNGI PLANTAE (Multicellular, Multicellular. (Multicellular, eukaryotic) eukaryotic) eukaryotic) **PROTISTA** (Eukaryotic, unicellular and multicellular) **EUBACTERIA ARCHAEBACTERIA** (Unicellular, (Unicellular, prokaryotic) prokaryotic)

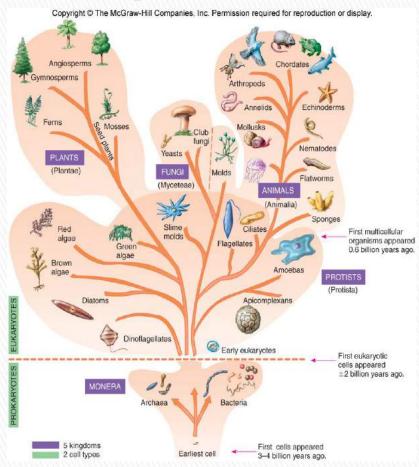

Classification

Woese-Fox Classification

Three Super Kingdoms


Eubacteria Archaeabacteria Eukarya

System is based on rRNA.


Assigning Specific Names

- The binomial system of nomenclature
 - The generic (genus) name followed by the species name
 - Generic part is capitalized, species is lowercase
 - Both are italicized or underlined if italics aren't available
 - Staphylococcus aureus

The Origin and Evolution of Microorganisms

- Phylogeny- the degree of relatedness between groups of living things
- Based on the process of evolutionhereditary information in living things changes gradually through time; these changes result in structural and functional changes through many generations
 - Two preconceptions:
 - All new species originate from preexisting species
 - Closely related organisms have similar features because they evolved from a common ancestor
 - Phylogeny usually represented by a tree- showing the divergent nature of evolution

