Master of Science (Computer Science)[M.Sc.(CS)]

SEMESTER-I

Code	Subject	Type of Course	L	Pr.	Cr.	Int. Exam.	Ext. Exam.	Total Marks
PG1.1	Operating Systems	Major (Core)	4	-	4	50	50	100
PG1.2	Data Communications and Networking	Major(Co re)	4	-	4	50	50	100
PG1.3	Data Structures and Analysis of Algorithm	Major(Co re)	2	-	2	0	50	50
PG1.4	Data Structures and Analysis of Algorithm- Lab	Major (Core)	-	2	2	25	25	50
PG1.5	Operating Systems-Lab	Major (Core)	-	2	2	25	25	50
PG1.6	Elective-I-	Major (Elective)	4	-	4	50	50	100
PG1.7	Research Methodology	Minor Stream (RM)	4	-	4	50	50	100
	Total				22			550

SEMESTER-II

Code	Subj ect	Type of Course	L	Pr.	Cr.	Int. Exam.	Ext. Exam.	Total Marks
PG2.1	Data Warehousing and Data Mining	Major (Core)	4	-	4	50	50	100
PG2.2	Database Management Systems	Major (Core)	4	-	4	50	50	100
PG2.3	Introduction to Microprocessors	Major (Core)	2	-	2	50	0	50
PG2.4	Database Management Systems-Lab	Major (Core)	-	2	2	25	25	50
PG2.5	Web Technology-Lab	Major (Core)	-	2	2	25	25	50
PG2.6	Elective-II-	Major (Elective)	4	-	4	50	50	100
PG2.7	OJT/RP	RP/OJT		4	4	50	50	100
	Total				22			550

P.G. Department of Computer Science, S.N.D.T. Women's University, Santacruz(w), Mumbai-49

Code	Subject	Type of Course	L	Pr.	Cr.	Int.E xam.	Ext.E xam.	Total Marks
PG3.1	Big Data Analytics	Majo (Core		-	4	50	50	100
PG3.2	Machine Learning	Majo (Core		-	4	50	50	100
PG3.3	Data Science	Majo (Core	_	-	2	0	50	50
PG3.4	Big Data Analytics-Lab	Majo (Core		2	2	25	25	50
	Machine Learning-Lab	Majo (Core		-	2	25	25	50
	Elective-III	Majo (Core		-	4	50	50	100
PG3.7	RP	RP	4	-	4	50	50	100
		Total			22			550

SEMESTER-III

SEMESTER-IV

Code	Subject	Type of	L	Pr.	Cr	Int.	Ext	Total	
		Course			•		•		
PG4.1	Deep Learning	Major	4	-	4	50	50	100	
		(Core)							
PG4.2	Natural Language Processing	Major	4	-	4	50	50	100	
		(Core)							
PG4.3	Mobile Application Development	Major	-	2	2	25	25	50	
	using Android Programming	(Core)							
PG4.4	Natural Language Processing-Lab	Major	-	2	2	25	25	50	
		(Core)							
PG4.5	Elective-IV/(MOOC/Swayam)	Major	4		4	50	50	100	
		(Core)							
PG4.6	OJT/RP	OJT/RP	6		6	100	50	150	
	Total				22			550	

Elective-I	Elective-II
1.Cyber Security	1.Ethical Hacking
2.Digital Image Processing	2.Project Management
3.Software Engineering	3. Fuzzy Logic & Neural Network
4.Artificial Intelligence	4.IoT

Elective-III	Elective-IV
1.Blockchain	1.Information Security
2.GIS and Remote Sensing	2.Digital Forensics
3.SoftwareTesting	3.Agile Methodology
4.Robotic Process Automation	4.Cloud Computing

	SEMES	STER	1Credit	= 25 Marks	
I	I		IV	Total Credits	=88
22	22	22	22	Total Marks	=88*25 =2200

ASSESSMENT:

- (I) The final total assessment of the candidate is made in terms of an internal assessment and an external assessment for each course.
 - 1. For each theory paper, 2 credit will be based on internal assessment and 2credits for end examination (external assessment), whereas the lab papers1credit is for internal and one for external.
 - 2. It is mandatory to pass the internal exam of each Subject and hence is eligible for external exams.
 - 3. The division of the 25marks allotted to internal assessment of theory papers is on the basis of Attendance of 5 marks and5 assignment throughout the semester of 5 marks and two written test of15markseachtakenduringthe semester(average of two should be taken).
 - 4. Themarksofthepractical's/labwouldbegivenonexternalpracticalexam&oral.
 - 5. NoTheoryQuestionsorExamstobeconducted.OnlyProgramswillbeasked.OutputQuestionscanbe asked.
 - 6. The internal marks will be communicated to the University at the end of each semester. These marks will be considered for the declaration of the results.
- (II) Examination:

Examinations shall be conducted at the end of the semester i.e. During December and in May, However supplementary examinations will also be held in December and May.

Students have to pass both the internal assessment and external assessment separately.

Total marks obtained =Internal marks + External marks

M.Sc.(C.S.)DETAILEDSYLLABUS

Semester-I

Subject Title	Credit:04 OPERATING SYSTEMS
Subject Code: PG1.1	Lecture:04
Branch: M.Sc.(C.S.)	Semester-I

Modules	Sr. No.	Topic and Details	No of Lectures Assigned	Marks Weight age%
UNIT-I	1	Introduction to Operating Systems(OS): Computer-System Organization, Computer-System Architecture, Operating-System Structure, Operating- System Operations, Process Management, Memory Management, Storage Management, Protection and Security, Distributed Systems, Special-Purpose Systems, Computing Environments. Operating-System Services, User Operating-System Interface, System Calls, Types of System Calls, System Programs, Operating-System Design and Implementation, Operating-System Structure, Virtual Machines, Operating-System Generation.	5	10
UNIT-II	2	 Processor Management: Process concept, Process scheduling, Operations on Processes, Inter-process Communication, Multithreading models, threading issues, Process scheduling algorithms, Thread scheduling, Multiple processor Scheduling. Process Coordination: Synchronization, Semaphores, Monitors, Deadlocks characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock Avoidance, Deadlock detection, recovery from deadlock. 	10	20
	3	Memory Management: Swapping, Contiguous Memory Allocation, Paging, Structure of the Page Table, Segmentation Virtual memory Management: Demand Paging, Copy-on-Write, Page replacement, Allocation of Frames, Thrashing.	10	20

UNIT-III	4	 File Management: File Concept, File Access Methods, Directory Structure, File Sharing, File Protection, File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods, Free-Space Management, Efficiency and Performance, Recovery, Log-Structured File Systems, NFS. I/O Management: I/O Hardware, Application I/O Interface, Kernel I/O Subsystem, Transforming I/O Requests to Hardware Operations, STREAMS, Performance. Disk Management: Disk Structure, Disk Attachment, Disk Scheduling, Disk Management, Swap-Space Management, RAID Structure, Stable - Storage Implementation, Tertiary - Storage Structure 	10	20
	5	Distributed systems:Types of Distributed Operating, Network Structure,Network Topology, Communication Structure,Communication Protocols, Robustness, Design Issues.Distributed File Systems:Naming and Transparency, Remote File Access, StatefulVersus Stateless Service, File ReplicationDistributed Coordination:Event Ordering, Mutual Exclusion, Atomicity,Concurrency Control, Deadlock Handling, ElectionAlgorithms, Reaching Agreement	10	20
UNIT-IV	6	Protection and Security: Goals of Protection, Principles of Protection, Domain of Protection, Access Matrix, Implementation of Access Matrix, Access Control, Revocation of Access Rights, Capability-Based Systems, Language-Based Protection. The Security Problem, Program Threats, System and Network Threats, Cryptography as a Security Tool, User Authentication, Implementing Security Defenses, Firewalling to Protect Systems and Networks, Computer- Security Classifications	5	10

- 1. Abraham Silberscatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 7th Ed.JohnWileyandSons,Inc2005.
- 2. MilanMilenkovic,OperatingSystemsConceptsAndDesign",SecondEdition,McGraw-HillInternationalEditions,"
- 3. WilliamStallings, "OperatingSystems:InternalsanddesignPrinciples", 5thEdPrentice Hall, 2005.
- 4. AndrewTanenbaum, "Modernoperatingsystems" 3rdEd, PearsonEducation.

Branch: M.Sc.(C.S.) Semester-I

Subject Code:PG1.2

Lecture:04 Credit:04

Subject Title

DATA COMMUNICATIONS AND NETWORKING

Modules	Sr. No.	Topic and Details	No of Lectures Assigned	Marks Weight age%
UNIT-I	1	Introduction: Computer Networks and its uses, Network categorization and Hardware : Broadcast and point-to-point networks, Local Area Network (LAN), Metropolitan Area Network(MAN), Wide Area Networks (WAN), Inter networks, Topologies, Wireless Networks, Network Software: Protocols, Services, network architecture, design issues, OSI Reference model, TCP/IP Reference model, Comparison of OSI and TCP/IP Models. Introduction to Example Networks: Internet, Connection-Oriented Networks– X.25,FrameRelay,ATM	6	15
	2	Data Communication Model , Digital and Analog data and signals, bit rate, baud, bandwidth, Nyquist bit rate, Guided Transmission Media – Twisted Pair, Coaxial cable, Optical fiber; wireless transmission–Radio waves, microwaves, infrared waves; Satellite Communication.	4	10
UNIT-II	3	Switching: Circuit Switching, Packet switching; Multiplexing: Frequency Division Multiplexing, Time Division Multiplexing, Synchronous and Asynchronous TDM, Modems, Transmission impairments, Manchester and differential Manchester encoding.	6	15
	4	Error Detection and Correction: Types of errors Redundancy, Detection Versus Correction, Error Detection, Error Correction, Hamming Code, Cyclic Redundancy Check, Check sum and Its idea.	8	15
UNIT-III	5	Data Link Layer Design issues: Framing, error control, Flow Control, Error Detection and correction; Elementary Data Link Protocols, Sliding Windows Protocols; Medium Access Control: Aloha, CSMA protocols, Collision free protocols, Limited Contention Protocols; Wave length division Multiple access protocol, Wireless LAN Protocol: MACA; IEEE 802.3Ethernet, IEEE 802.4 Token Bus; IEEE 802.5 Token ring, Binary Exponential Back off algorithm, Digital Cellular, Radio : Global System for Mobile	14	25

		Communication (GSM), Code Division Multiple Access (CDMA)		
UNIT-IV	6	Network Layer, Design issues, Virtual circuit and Datagram Subnet, Routing Algorithms, Optimality principle, Shortest path routing, Flooding, Distance Vector Routing, Link State Routing, Hierarchical Routing, Broadcast and Multi Cast Routing, RoutingforMobilehosts,RoutinginAdhocNetworks,cong estionControlAlgorithm,GeneralPrincipalsTraffic Shaping, Leaky Bucket, Token Bucket, choke packets, Load Shedding	12	20

- 1. Behrouz A. Forouzan. Data Communications and Networking (4thEdition).McGraw Hill. ©2007.ISBN:0-07-296775-7.
- Data and Computer Communications, 10thed., by William Stallings, Pearson
 Computer Networks, Andrew S. Tanenbaum 5thedition.

Branch :M.Sc.(C.S.)	Semester-I
SubjectCode:PG1.3	Lecture:02 Credit:02
Subject Title	DATA STRUCTURES AND ANALYSIS OF ALGORITHM

Modules	Sr. No:	Topics and Details	No. of lectures assigned	Marks Weight age
UNIT-I	1	Introduction: Data types, ADT, data structure: Definition & classification Analysis of algorithms (recursive and non-recursive) with emphasis on best case, average case and worst case	4	10
UNIT-II	2	Linear Data structures with applications: List: Introduction, implementation using array & linked list (singly, doubly, circular, multi-list), Applications: Polynomial representation, Sparse matrix Stack: Introduction, implementation using array & linked list, Applications: Function call, Recursion, balancing of parenthesis, Polish Notation: infix to post fix conversion and evaluation of post fix expression Queue: Introduction (queue, circular queue, deque, priority queue), implementation using array &linked list, Applications: Job Scheduling.	12	10

P.G.I	P.G.DepartmentofComputerScience,S.N.D.T.Women'sUniversity,Santacruz(w),Mumbai-49					
UNIT-III	3	Non Linear data structures: Tree: Introduction and representation, Forest, Tree traversal, Binary Tree (representation using array and links): Binary tree traversal (recursive & non-recursive implementation), Expression tree Graph: Introduction, representations, Traversal (BFS, DFS), Applications: Shortest path (Single source-all destinations), Minimal spanning tree (Prim's algorithm, Kruskal's algorithm)	12	10		
UNIT-IV	4	 Searching and Sorting: Linear Search, Binary Search, Transpose sequential search, Binary search tree, Heap tree (application in priority queue and sorting), AVL tree, Splay tree, M-way search tree, B tree (insertion), B+ tree (Definition and introduction), B*tree (Definition and introduction), Tries, Application of B tree and B+ tree in File Structures Hash Tables: Introduction, hash functions and hash keys, Collisions, Resolving collisions, Rehashing Sorting with algorithm analysis(best case, worst case, average):Bubble, Selection, Insertion, Shell, Merge, Quick, Heap, Radix 	14	10		
	5	NP-Completeness and the P & NP Classes Introduction, Polynomial Time & Verification, NP- Completeness and Reducibility, The Vertex Cover Problem, The Traveling Salesman Problem, The Set Covering Problem	8	10		

- 1 Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", PearsonEducation,2ndedition(2003)
- 2 G. A. V. PAI, "Data structures and algorithms, concepts, Techniques and Applications", 1stedition(2008)
- Horowitz, Sahni, Anderson-Freed, "Fundamentals of Data Structures in C", University Press (2ndedition-2007)
- 4 Jean-PaulTremblay,PaulG.Sorenson,"AnIntroductiontoDataStructureswith Applications",TataMcGraw-Hill,2Edition,(2007)
- 5 Cormen,Leiserson,Rivest,Stein,"IntroductiontoAlgorithm",PHI(2003),2ndE dition
- 6 Gilberg&Forouzan,"DataStructures:APseudocodeApproachwithC",ThomsonLearning
- Parag Dave & Himanshu. Dave, "Design and Analysis of Algorithms ", Pearson
 - Education(2008)
- 8 Tanenbaum," Data Structures Using C & C++",PHI.
- 9 MichelGoodrich,RobertoTamassia,"Algorithmdesignfoundation,analysis&internetexamples",Wiley
- 10 AVAho, JEHopcroft, JDUllman,"Data Structures & Algorithms", Addison-Wesley Publishing(1983).
- 11 Michael Berman, "Data Structures Via C++: Objects by Evolution", Oxford Univ. Press(2004)
- 12 DEKnuth, "Sorting&Searching-TheArtofComputerProgramming", Vol.3, Addison-Wesley Publishing(1973).
- 13 Seymour Lipschutz, "Data Structures with C"McGrawHill,2017.
- 14 Yashawant Kanetkar, Data Structures Through C,BPB publications.

Branch: M.Sc.(CS)	Semester-I
Subject Code: PG1.4	PRACTICAL:02 CREDIT:02
Subject Title	DATA STRUCTURES AND ALGORITHMLAB

Modules	Sr. No:	Topics and Details	No. of Lectures assigned	Marks Weight age
UNIT-I	1	Implementation of linear data structure Array.	3	06
	2	Implementation of Searching and Sorting Algorithms	4	
UNIT-II	3	Implementation of linear data structure Linked List.	4	20
UNIT-III	4	Implementation of stack, queue, enqueue, dequeue.	4	20
	5	Implementation of Tree data structure.	6	24
UNIT-IV	6	Graph: DFS, BFS.	4	24

- 1. Data Structures Using C and C++:Langsam Y, PHI,2ndEd.
- 2. Magnifying Data Structures: Arpita Gopal, PHIL earning.
- 3. DataStructuresthroughC:Y.P.Kanetkar,BPBPublications,2nd Ed

Branch: M.Sc.(CS) Subject Code: PG1.5		Sc.(CS)	Semester-I		
		e: PG1.5	Practical:02 Credit:02		
S	Subject I	Title Operating System Lab			
Modules	Sr. No:		Topics and Details	No. of Lectures assigned	Marks Weight age%
UNIT-I	1	hgrp,chmod,gzip Commands to A File Systems: M	els,cp,mv,rm,ln,cd,mkdir,rmdir,chown,c ,tar,updated,find. Access File Contents: cat, less, diff	2	5
	2	Processes: top, p Network: ping, p Other: IOSTAT, parameters.		3	

P.G.DepartmentofComputerScience,S.N.D.T.Women'sUniversity,Santacruz(w),Mumbai-49

UNIT-II	3	The grep Family: The grep Command, grep Examples with Regular Expressions, grep with Pipes, grep with Options, egrep(Extended grep),Fixed grep or Fast grep	5	20
UNIT-III	4	Introduction to UNIX Shells: Definition and Function, System Startup and the Login Shell, Processes and the Shell, The Environment and Inheritance, Executing Commands from Scripts. The Interactive Bourne Shell, The C Shell, The KornShell, The Interactivebash Shell Regular Expressions, Combining Regular Expression Meta characters	5	5
UNIT-IV	5	ProgrammingwiththebashShell: IntroductionSection,R eadingUserInput,Arithmetic,PositionalParametersandCo mmandLineArguments,ConditionalConstructsandFlowC ontrolSection,LoopingCommands,FunctionsSection,Trap pingSignals,Debugging,ProcessingCommandLineOption swithgetopts,TheevalCommandandParsing The Command Line, bash Options, Shell Built –In Commands.	10	20

Reference Book:

- $1. \ ``UnixShellby Examples'' 4 th Edition, Ellie Quigley, Pearson Edition$
- 2. "Sed&Awk",2ndEdition,DaleDoughertyandArnoldRobbins
- 3. "IntroductiontoUnixandShellProgramming",PearsonEducation,<u>M.G.Venkateshmurthy</u>
- 4. Advanced Linux Programming, Mark Mitchell, Jeffrey Oldham, and Alex Samuel, New Riders Publishing
- 5. Unix/Linux Programming by Sumitabha Das, PHP

Electives of Semester-I

Branch: M.Sc.(C.S.)	Semester-I
Subject Code: PG1.6.1	Lecture:04 Credit:04
Subject Title	Elective-I: Cyber Security

Modules	Sr No.	Topic and Details	No. of Lectures Assigned	Marks Weight age%
UNIT-I	1	Introduction to Cyber Security Overview of Cyber Security, Internet Governance– Challenges and Constraints, Cyber Threats:- Cyber Warfare- Cyber Crime-Cyber, terrorism-Cyber Espionage, Need for a Comprehensive Cyber Security Policy, Need for a Nodal Authority, Need for an International convention on Cyberspace	4	10

<u> </u>		Cyber Security Vulnerabilities and Cyber Security		
		Safeguards		
		Cyber Security Vulnerabilities-Overview, vulnerabilities in		
		software, System administration, Complex Network		
		Architectures, Open Access to Organizational Data, Weak	-	1.5
	2	Authentication, Unprotected Broadband communications,	7	15
		Poor Cyber Security Awareness. Cyber Security Safeguards-		
		Overview, Accesscontrol, Audit, Authentication, Biometrics, Cr		
		yptography, Deception, Denial of Service Filters, Ethical		
		Hacking, Firewalls, Intrusion Detection Systems, Response,		
		Scanning, Security policy, Threat Management.		
		Securing Web Application, Services and Servers		
	2	Introduction, Basic security for HTTP Applications and	7	15
	3	Services, Basic Security for SOAP Services, Identity	7	15
UNIT-II		Management and Web Services, Authorization Patterns,		
		Security Considerations, Challenges.		
	4	Intrusion Detection and Prevention	8	15
		Intrusion, Physical Theft, Abuse of Privileges, Unauthorized		
		Access by Outsider, Malware infection, Intrusion detection		
		and Prevention Techniques, Anti-Malware software,		
		Network based Intrusion detection Systems, Network based		
		Intrusion Prevention Systems, Host based Intrusion		
		prevention Systems, Security Information Management,		
		Network Session Analysis, System Integrity Validation		
		Cryptography and Network Security		
		Introduction to Cryptography, Symmetric key Cryptography,		
		Asymmetric key Cryptography, Message Authentication,		
	5	Digital Signatures, Applications of Cryptography. Overview	8	15
		of Firewalls- Types of Firewalls, User Management, VPN		
		Security, Security Protocols:-security at the Application		
UNIT-I11		Layer-PGP and S/MIME, Security at Transport Layer-SSL		
		And TLS, Security at Network Layer-IPSec.		
		Cyber space and the Law		
	6	Introduction, Cyber Security Regulations, Roles of	8	15
	0	International Law, the state and Private Sector in Cyber	0	15
		space, Cyber Security Standards. The INDIAN Cyber space,		
		National Cyber Security Policy 2013.		
		Cyber Forensics		
		Introduction to Cyber Forensics, Handling Preliminary		
UNITIV	7	Investigations, Controlling an Investigation, Conducting	8	15
		disk-based analysis, Investigating Information-hiding,		
		Scrutinizing E-mail, Validating E-mail header information,		
		Tracing Internet access, Tracing memory in real-time.		

References:

- 1. Digital Privacy and Security Using Windows: A Practical Guide By Nihad Hassan, Rami Hijazi, Apress
- 2. Cyber Crime Investigation, DSCI-Nasscom, 2013.
- 3. Information Systems Security: Security Management, Metrics, Frameworks And Best Practices (WithCd):Nina Gobole
- 4. Information systems control and Audit by Ron Weber, Pearson Pub.
- 5. Information security policies, procedures and standards by Thomas Pettier.
- 6. Information security Management Handbook-5thEdition-HAROLDF.TIPTON
- 7. Computer security by Alfred Basta, Wolf Halton
- 8. Information security policies-Thomas R. Peltier, Pel

Branch: M.Sc.(C.S.)	SEMESTER-I	
Subject Code: BC162	Lecture:04	
Subject Code: PG1.6.2	Credit: 04	
Subject Title	Elective-I: Digital Image Processing	

COURSEOBJECTIVES:

- 1. To introduce the fundamental problem so digital image processing (DIP).
- 2. To introduce the main concepts and techniques used to solve those.
- 3. To enable participants to implement solutions for reasonably complex problems, and to apply those to images.
- 4. To enable participants to understand basic DIP methodology that is discussed in the image processing literature, and applications of DIP across a broad range of scientific disciplines.
- 5. To motivate students to experience that DIP is a field where signal processing algorithms and methods become visual.

COURSEOUTCOMES:

After completion of course, students would be able to:

- 1. Understand image representation.
- 2. Enhance image quality using image enhancement techniques.
- 3. Filter given image using frequency domain filtering technique.
- 4. Select the right image restoration technique to remove degradation from given image.
- 5. Represent image using minimum number of bits using image compression.
- 6. Understand image segmentation technique.
- 7. Do morphological operations on given image.

Modules	Sr. No.	Topic and Details	No. of Lectures Assigned	Marks Weigh tage%
UNIT-I	1	Digital Image Fundamentals: Light,brightnessadaptionanddiscrimination,Humanvisu alsystem,Image as a 2D data, Image representation Gray scale and Color images, Image Sampling and quantization.	5	5
		Image enhancement and filtering in spatial domain:Intensity transformation functions: Contrast stretching, Thresholding, Image negative, Log transformation, Power-low	5	10
		transformation, Intensity level slicing and Bit-plane slicing. Image histogram, Histogram equalization process. Fundamentals of spatial filtering, Correlation and convolution, Spatial filtering mask for low pass filtering (smoothing) and high pass filtering (sharpening).		
	2	Image filtering in the frequency domain:Preliminary Concepts, Extension to functions oftwo variables, Image Smoothing, Image Sharpening,Homomorphic filtering,2D-DFT, 2DFFT, 2D-DCT,Fundamentals of 2D-wavelet transform, Imagepyramids, sub-band coding.	5	10
UNIT-II		Image restoration:Reasons for image degradation, Model of imagedegradation/ restoration process, Noise probabilitydensityfunctions,Imagerestorationusingspatialfiltering(Meanfilters,Orderstatisticfilters and adaptive filters),Inverse Filtering,MMSE (Wiener)Filtering.	5	15
	3	Color Image Processing:Color Fundamentals,Color Models, Pseudo-color image processing.	5	15
UNIT-III		Image Compression:Fundamentals of redundancies, Basic CompressionMethods: Huffman coding, Arithmetic coding, LZWcoding, JPEG Compression standard, Wavelet basedimage compression.	5	15
	5	Image Segmentation:Edge based segmentation, Region based segmentation,Region split and merge techniques, Region growing bypixel aggregation, optimal thresholding.	5	15

UNIT-IV	6	Morphological Image Processing: Basic morphological operations, Erosion, dilation, opening, closing, Structuring elements, Hit-or-Miss transform, Basic Morphological Algorithms: hole filling, Connected components, thinning, skeletons, Reconstruction by	15	
		erosion and dilation.		

Text Book:

1. Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods, Third Edition, Pearson Education.

- 1. Digital Image Processing, S Jayaraman, SEsakkirajan, TVeerakumar, TataMcGrawHill Publication.
- 2. Digital Image Processing, SSridhar, Oxford University Press.

Branch: M.Sc.(C.S.)	Semester-I	
Subject Code: PG1.6.3	Lecture:04 Credit:04	
Subject Title	Elective-I: SOFTWARE ENGINEERING	

Modules	Sr. No.	Topic and Details	No. of Lectures Assigned	Marks Weight age
	1	Software Processes: Processes projects and products, Component software processes, characteristics of a software process, software Development Process, project management process, software configuration management process, software configuration management process, and process management process.	8	15
UNIT-I	2	Software requirement Analysis and Specification: Software requirement, need for SRS, requirement process, problem analysis, analysis issues. Informal approach, structured analysis, object oriented modeling, other modeling approaches, prototyping, requirement specification, characteristics of an SRS, component of an SRS, specification languages, structure of requirement document validation requirement reviews, other method metrics, size measures, quality metrics.	8	15
UNIT-II	 Planning Software Project: Cost estimation, uncertain in cost estimation, building cost estimation models, on setimation, COCOMO model, project scheduling, aver duration estimation, project scheduling and mileston staffing and personnel planning, ray leigh curve, person plan, team structure, software configuration managem 		10	20

P.G.DepartmentofComputerScience,S.N.D.T.Women'sUniversity,Santacruz(w),Mumbai-49

	4	Coding – programming practice, verification, size measures, complexity analysis, coding standards. Testing–fundamentals, white box testing, control structure testing, black box testing, basis path testing, code walk-throughs and inspection, testing strategies-Issues, Unit testing, integration testing, Validation testing, System testing.		15
UNIT-III	5	Maintenance-Overview of maintenance process, types of maintenance. Risk management: software risks-risk identification-risk monitoring and management. Project Management concept: People–Product-Process-Project.	8	15

6between people and effort-defining task set for the software project-selecting software engineering task Software configuration management: Basics and standards User interface design-rules. Computer aided software engineering tools-CASE building blocks, taxonomy of CASE tools, integrated CASE environment.20	UNIT-IV
--	---------

Reference Books:

- 1. Presman Roger, Software, Engineering: A Practitioner's Approach Tata McGrawHill, New Delhi.
- 2. Jalote Pankaj, An Integrated Approach to Software Engineering Narosa, New Delhi
- 3. R. E. Fairly. Software Engineering Concepts.McGrawHill,Inc1985.
- 4. Poyce, Software Project Management, Addison-Wesly.
- 5. Sommer ville, Software Engineering, Addison-Wesly.

Branch: M.Sc.(C.S.)	SEMESTER-I
Subject Code: PG1.6.4	Lecture: 04 Credit: 04
Subject Title	Elective-I: ARTIFICIAL INTELLIGENCE

COURSE OBJECTIVES:

Students will be able to

- 1. Understand fuzzy logic, ANN Model Curriculum of Engineering & Technology PG Courses [Volume-I] [354].
- **2.** Understand GA & EP.

COURSE OUTCOMES:

Students will be able to-

- 1. Learn the concepts of biological foundations of artificial neural networks.
- 2. Learn Feedback networks and radial basis function networks and fuzzy logics.
- **3.** Identify fuzzy and neural network.
- **4.** Acquire the knowledge of GA.

Modules	odules Sr. No. Topic and Details		No of Lectures Assigned	Marks Weight age %
UNIT-I	1	Introduction: Overview of AI, Importance of AI, History, related fields, Representation of Knowledge, Knowledge Base Systems, State Space Search Problem Characteristics of 8- Queens, Traveling Salesman, Missionary & Cannibals, Crypt, Arithmetic, Monkey Banana Problem, Tower of Hanoi and Block World.	8	16
UNIT-II	2	Searching Methods: Uninformed Search Methods: Breadth First Search (BFS), Depth First Search (DFS), Depth Limited Search, Depth First Iterative Deepening (DFID), Informed Search Methods: Greedy best first Search, A* Search, Memory bounded heuristic Search. Local Search Algorithms and Optimization Problems: Hill climbing search Simulated annealing, Local beam search, Genetic algorithms. Adversarial Search: Games, Optimal strategies, The minimax algorithm, Alpha-Beta Pruning.	8	20
	3	Predicate & Logic: Representing simple facts in Logic -Computable functions in predicates, resolution – unification – forward vs. backward reasoning., Probabilistic reasoning – Bayes's Theorem – Certainty Factors– Demphster–Shafer Theory – Fuzzy, Sets, Reasoning with Fuzzy Logic, Natural Language Computation with Fuzzy Logic.	9	20
UNIT-III	4	StructuredKnowledgeRepresentation:AssociativeNetworks,SemanticNets,FramesStructures,Conceptual,Dependencies& Scripts,Learning – Concept of Learning – LearningAutomata, Learning by induction.NaturalLanguageNaturalLanguageProcessing:Overviewof Linguistics,GrammarsandLanguages, basicParsing techniques, semantic analysis,and representationandNaturalLanguagegenerationandNaturalLanguagegenerationand	11	24

UNIT-IV	5	Expert Systems: Architecture – Need and Justification of Expert Systems –Knowledge acquisition and validation. Perception and Action, Real time search, perception, action, vision, robot architecture, Learning in Neural Networks – Applications – Hopfield Networks, Back propagation, Case Study - XCON, PROSPECTOR	9	20	

- 1. Introduction to AI and Expert Systems Patterson.
- 2. Artificial Intelligence A Modern Approach- Stuart Rushell.
- 3. Artificial Intelligence Rich E and Knight K.
- 4. Principles of Artificial Intelligence Nilsson.
- 5. Artificial Intelligence An Engineering Approach Schalkoff R J.
- 6. Introduction to Expert System Peter Jackson.
- 7. Artificial Intelligence Janakiraman.

Branch: M.Sc.(C.S.)	Semester-I
Subject Code: PG1.7	Lecture:04 Credit:04
Subject Title	Minor Stream: RESEARCH METHODOLOGY

Modules	Sr. No.	Topic and Details	No. of Lectures Assigned	Marks Weight age
	1	Research methodology: An Introduction Objectives of Research, Types of Research, Research Methods and Methodology, Defining a Research Problem, Techniques Involved in Defining a Problem.	4	08
UNIT-I	2	Research Design Need for Research Design, Features of Good Design, Different Research Designs, Basic Principles of Experimental Designs, Sampling Design, Steps in Sampling Design, Types of Sampling Design, Sampling Fundamentals, Estimation, Sample size Determination, Random sampling.	6	12
UNIT-II	3	Measurement and Scaling Techniques Measurement in Research, Measurement Scales, Sources in Error, Techniques of Developing Measurement Tools, Scaling, Meaning of Scale, Scale Construction Techniques.	10	20
	4	Methods of Data Collection and Analysis Collection of Primary and Secondary Data, Selection of appropriate method Data Processing Operations, Elements of Analysis, Statistics in Research, Measures of Dispersion, Measures of skewness, Regression Analysis, Correlation.	8	18
UNIT-III 5		Techniques of Hypotheses, Parametric or Standard Tests Basic concepts, Tests for Hypotheses I and II, Important parameters limitations of the tests of Hypotheses, Chi-square Test, Comparing Variance, As a non-parametric Test, Conversion of ChitoPhi, Caution in using Chi-square test.	12	24

P.G.DepartmentofComputerScience,S.N.D.T.Women'sUniversity,Santacruz(w),Mumbai-49

							•
UNIT-IV	6	ANOVA, Two ANOCOVA, M	Way ANOVA, Iultivariate Ana Analysis, factor	-variance ANOVA, , ANOCOVA Assum Ilysis Technique Clas r Analysis, R-type Q'	ptions in sification	10	20

Reference books:

- 1. "Research Methodology", C.R. Kothari, Wiley Eastern.
- 2. "Formulation of Hypothesis", Will kinson K. P, L Bhandarkar, Hymalaya Publication, Bombay.
- 3. "Research in Education", John WBest and V. Kahn, PHI Publication.
- 4. "Research Methodology-A step by step guide for beginners", Ranjit Kumar, Pearson
- 5. "Management Research Methodology-Integration of principles, methods and Techniques", K.N.Krishna swami and others, Pearson Education

Semester-II

Branch: M.Sc.(C.S.)	Semester-II	
Subject Code: PG2.1	Lecture:04 Credit:04	
Subject Title	DATA WAREHOUSING AND DATAMINING	

Modules	Sr. No.	Topic Details	No. of Lectures Assigned	Marks Weight age
UNIT-I	1	Data Warehousing: Overview And Concepts: Need for dataware housing, Basic elements of dataware housing, Trends in datawarehousing.	2	08
	2	Planning And Requirements: Project planning and management, Collecting the requirements.	2	
	3	Architecture And Infrastructure: Architectural Components, Infrastructure and metadata.	4	16
	4	Data Design And Data Representation: Principles of dimensional modeling, Dimensional modeling advanced topics, data extraction, transformation and loading, data Quality.	4	
UNIT-II	5	Information Access And Delivery: Matching information to classes of users, OLAP in data warehouse, Data warehousing and the web.	4	16
	6	Implementation And Maintenance: Physical design process, data warehouse deployment, growth and Maintenance.	4	
	7	Data Mining: Introduction: Basics of data mining, related concepts, Data mining techniques.	4	16
	8	Data Mining Algorithms: Classification, Clustering, Association rules.	4	
	9	Knowledge Discovery: KDD Process Web Mining: Web Content Mining, Web Structure Mining, Web Usage mining.	6	